Search results for " 42B05"

showing 3 items of 3 documents

Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

2009

A new method is presented for Fourier decomposition of the Helmholtz Green Function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Helmholtz Green function are split into their half advanced+half retarded and half advanced-half retarded components. Closed form solutions are given for these components in terms of a Horn function and a Kampe de Feriet function, respectively. The systems of partial differential equations associated with these two-dimensional hypergeometric functions are used to construct a fourth-order ordinary differential equation which both components satisfy. A s…

42B05Helmholtz equationSeries (mathematics)Applied MathematicsGeneral MathematicsMathematical analysis34B27General Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)Legendre function35J05; 34B27; 42B05symbols.namesake35J05Helmholtz free energysymbolsHypergeometric functionFourier seriesMathematical PhysicsHorn functionBessel functionMathematics
researchProduct

Torus computed tomography

2020

We present a new computed tomography (CT) method for inverting the Radon transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a minimization problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution operator provides an admissible regularization strategy with a quantitative stability estimate. This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom. We also study the adjoint and the normal operator of the X-ray transform on the flat torus. The X-ray transform is unitary on the flat torus. We have i…

Physics::Medical PhysicsComputed tomography01 natural sciencesFourier'n sarjatintegraalilaskentamedicineFOS: MathematicstietokonetomografiaMathematics - Numerical Analysis0101 mathematicsFlat torusFourier seriesRadon transformPhysicsmedicine.diagnostic_testRadon transformApplied MathematicsMathematical analysisTorusNumerical Analysis (math.NA)65R10 65R32 44A12 42B05 46F12Fourier seriesFunctional Analysis (math.FA)regularizationMathematics - Functional Analysis010101 applied mathematicssovellettu matematiikkaRegularization (physics)numeerinen analyysiX-ray tomography
researchProduct

Fourier analysis of periodic Radon transforms

2019

We study reconstruction of an unknown function from its $d$-plane Radon transform on the flat $n$-torus when $1 \leq d \leq n-1$. We prove new reconstruction formulas and stability results with respect to weighted Bessel potential norms. We solve the associated Tikhonov minimization problem on $H^s$ Sobolev spaces using the properties of the adjoint and normal operators. One of the inversion formulas implies that a compactly supported distribution on the plane with zero average is a weighted sum of its X-ray data.

Pure mathematicsGeneral MathematicsBessel potential01 natural sciencesTikhonov regularizationsymbols.namesakeFOS: Mathematics0101 mathematicsperiodic distributionsMathematicsRadon transformRadon transformApplied Mathematics44A12 42B05 46F12 45Q05010102 general mathematicsZero (complex analysis)Function (mathematics)Fourier analysisFunctional Analysis (math.FA)010101 applied mathematicsSobolev spaceregularizationMathematics - Functional AnalysisDistribution (mathematics)Fourier analysissymbolsAnalysis
researchProduct